The Mandelbrot hole will go live in approximately . Why not try and solve it ahead of time?

lukasthaler

15,794
β€’
14,570
πŸ₯‡0
β€’
πŸ₯ˆ0
β€’
πŸ₯‰0

β›³

21 / 117 Holes

πŸ”£

1 / 60 Langs

πŸ†

13 / 82 Cheevos

πŸ“…

Abundant Numbers
738
Arabic to Roman
615
Christmas Trees
685
Diamonds
552
Divisors
905
Emirp Numbers
628
Evil Numbers
785
Fibonacci
935
Fizz Buzz
977
Happy Numbers
646
Leap Years
815
Leyland Numbers
865
Niven Numbers
746
Odious Numbers
783
Ordinal Numbers
774
Pangram Grep
753
Pascal’s Triangle
711
Pernicious Numbers
686
Prime Numbers
633
Quine
946
√2
616